
Jurnal Riset Studi Multidisiplin
Vol 9 No. 7 Juli 2025

ISSN: 2110-2152

150

PENGARUH PENGGUNAAN BAHASA PEMROGRAMAN

MICROPYTHON TERHADAP PENGGUNAAN MEMORI UNTUK

IMPELEMENTASI ALOGRITMA PID PADA MIKROKONTROLER

STM32

Mukhammad Rifqi Abdillah1, Santoso2

 2141220079@student.polinema.ac.id1, santoso@polinema.ac.id2

Politeknik Negeri Malang

ABSTRAK

MicroPython merupakan bahasa pemrograman berbasis interpretasi yang dirancang untuk berjalan

pada sistem mikrokontroler dengan sumber daya terbatas. Bahasa ini memberikan kemudahan

dalam pengembangan dan fleksibilitas tinggi, namun memunculkan pertanyaan terkait efisiensi

penggunaan memori. Penelitian ini bertujuan untuk menganalisis pengaruh penggunaan

MicroPython terhadap penggunaan memori dalam implementasi algoritma PID pada

mikrokontroler STM32F4. Pengujian dilakukan dengan menjalankan program PID menggunakan

platform MicroPython dengan variasi panjang data sebesar 8 hingga 1024 byte. Penggunaan

memori diukur secara langsung melalui fungsi monitoring memori internal dan hasilnya dianalisis

untuk mengevaluasi kinerja sistem. Hasil pengujian menunjukkan bahwa penggunaan memori

meningkat secara signifikan seiring dengan bertambahnya panjang data, dengan penggunaan

memori mencapai 10.304 byte pada data berukuran 1024 byte. Temuan ini menunjukkan bahwa

manajemen memori otomatis dan overhead interpretasi pada MicroPython menyebabkan

penggunaan memori yang lebih besar, yang dapat mempengaruhi efisiensi sistem pada

mikrokontroler dengan sumber daya terbatas. Dengan demikian, meskipun MicroPython unggul

dari sisi kemudahan pengembangan, penggunaannya dalam implementasi algoritma kendali pada

sistem real-time perlu dipertimbangkan secara cermat berdasarkan keterbatasan memori

perangkat.

Kata Kunci: MicroPython, PID, STM32.

ABSTRACT

MicroPython is an interpreted programming language designed to run on microcontroller systems

with limited resources. This language offers ease of development and high flexibility, yet raises

questions regarding memory usage efficiency. This study aims to analyze the impact of using

MicroPython on memory usage in the implementation of the PID algorithm on STM32F4

microcontrollers. Testing was conducted by running a PID control program using the

MicroPython platform with data lengths varying from 8 to 1024 bytes. Memory usage was

measured directly using internal memory monitoring functions, and the results were analyzed to

evaluate system performance. The test results showed that memory usage increased significantly

as the data length increased, with memory usage reaching 10,304 bytes for data lengths of 1024

bytes. These findings indicate that the automatic memory management and interpretation

overhead in MicroPython lead to higher memory usage, which may affect system efficiency on

resource-constrained microcontrollers. Therefore, although MicroPython excels in ease of

development, its use in implementing control algorithms in real-time systems needs to be carefully

considered based on the device’s memory limitations.

Keywords: MicroPython, STM32, PID.

mailto:%202141220079@student.polinema.ac.id1
mailto:dominggusosa@gmail.com2

151

PENDAHULUAN

Perkembangan sistem kendali berbasis mikrokontroler menuntut efisiensi tinggi

dalam penggunaan sumber daya, khususnya memori, untuk memastikan sistem dapat

berjalan secara andal dalam kondisi sumber daya terbatas. Salah satu algoritma yang

umum digunakan dalam sistem kendali adalah Proportional-Integral-Derivative (PID),

yang memiliki sensitivitas terhadap keterbatasan memori pada perangkat keras

mikrokontroler. Dalam konteks ini, pemilihan bahasa pemrograman menjadi faktor

penting yang memengaruhi efisiensi penggunaan memori sistem. MicroPython merupakan

implementasi ringan dari Python 3 yang dirancang khusus untuk perangkat

mikrokontroler, menawarkan kemudahan sintaksis, portabilitas, dan kecepatan

pengembangan, namun menggunakan pendekatan interpreted yang memiliki kebutuhan

memori lebih tinggi dibandingkan dengan bahasa terkompilasi seperti C++. Oleh karena

itu, penting untuk mengevaluasi sejauh mana penggunaan MicroPython memengaruhi

efisiensi penggunaan memori dalam implementasi algoritma PID pada sistem

tertanam(Prabowo & Irwanto, 2023).

Penelitian ini berfokus pada pengujian penggunaan memori algoritma PID yang

dijalankan dalam lingkungan bahasa pemrograman MicroPython pada mikrokontroler

STM32. Parameter utama yang dianalisis adalah penggunaan memori untuk berbagai

panjang data input, dengan tujuan mengetahui dampak nyata dari paradigma

pemrograman terhadap efisiensi pemanfaatan sumber daya dalam sistem tertanam. Hasil

pengujian diharapkan dapat memberikan referensi empiris dalam memilih bahasa

pemrograman yang sesuai untuk aplikasi kendali waktu nyata (real-time control) pada

perangkat mikrokontroler dengan keterbatasan sumber daya.

METODE PENELITIAN

Fitur bahasa program MicroPython pada STM32

Dalam pemilihan bahasa pemrograman untuk mikrokontroler, kompatibilitas dengan

perangkat keras dan periferal seperti GPIO, UART, SPI, dan I2C menjadi faktor utama.

Vendor mikrokontroler biasanya menyediakan pustaka abstraksi perangkat keras (HAL)

untuk mempermudah akses ke register dan periferal tertentu. Tanpa pustaka ini, bahasa

pemrograman, meskipun memiliki banyak fitur, dapat kurang efektif dalam implementasi

sistem kendali berbasis STM32F4, seperti pada ROV (Remotely Operated Vehicle)(ST-

Microelectronics, 2024). Selain itu, dukungan fitur bahasa pada perangkat juga

berpengaruh, karena beberapa fitur tingkat lanjut mungkin tidak sepenuhnya didukung.

Manajemen memori menjadi faktor penting lainnya, dengan tiga metode utama: otomatis,

manual, dan garbage collection. Meskipun garbage collection mengurangi kesalahan

alokasi memori, proses ini dapat menyebabkan jeda eksekusi yang tidak terduga, yang

dapat memengaruhi kestabilan sistem kendali real-time(Bell, 2024).

Pemilihan toolchain dan sistem runtime juga berdampak pada efisiensi dan kinerja

sistem. STM32F405RGT6 mendukung beberapa kompiler seperti GCC dan LLVM yang

menawarkan berbagai tingkat optimasi ukuran dan kecepatan eksekusi. Alternatif lainnya

adalah bahasa terinterpretasi seperti MicroPython, yang mempermudah pengembangan

tanpa kompilasi tambahan tetapi memiliki overhead eksekusi lebih tinggi dibandingkan

bahasa yang dikompilasi langsung. Selain itu, sistem runtime mengelola stack, heap,

threading, dan fitur dinamis lainnya, yang dapat disediakan oleh pustaka standar bahasa

atau sistem operasi real-time. Pada STM32, pendekatan bare-metal runtime tanpa sistem

operasi juga dapat diterapkan, meskipun dengan fitur yang lebih terbatas dibandingkan

sistem yang menggunakan OS penuh(Plauska et al., 2023).

152

Dalam penelitian ini, MicroPython digunakan sebagai bahasa pemrograman pada

STM32F4 untuk mengimplementasikan algoritma PID dengan fokus analisis pada

penggunaan memori saat proses eksekusi berlangsung. Konfigurasi sistem dilakukan

dengan menggunakan MicroPython port STM32 dengan pustaka machine untuk

mengakses GPIO dan UART, serta modul waktu internal untuk pengukuran durasi

eksekusi. Lingkungan pengujian menggunakan pendekatan bare-metal tanpa sistem

operasi untuk menjaga kesederhanaan dan kontrol penuh terhadap pemanfaatan memori

selama pengujian.

Algoritma yang Digunakan

Dalam penelitian ini, algoritma Proportional-Integral-Derivative (PID) digunakan

sebagai metode pengendalian utama dalam sistem kendali permukaan Remotely Operated

Vehicle (ROV). Algoritma ini bertugas mengatur aktuator berdasarkan selisih antara nilai

setpoint dan nilai aktual dari sensor, dengan tujuan menjaga kestabilan sistem dan

menghasilkan respons yang cepat serta presisi(Murdani, 2023). Implementasi PID

menjadi komponen penting dalam pengujian performa bahasa pemrograman, karena

perhitungannya melibatkan operasi berulang yang sensitif terhadap efisiensi eksekusi pada

mikrokontroler STM32F(Solekha & Latifa, 2024).

Performa algoritma ini dievaluasi berdasarkan parameter penggunaan memori

sebagai indikator efisiensi sistem. Implementasi PID diuji pada lingkungan MicroPython

di mikrokontroler STM32F405RGT6 dengan membandingkan penggunaan memori pada

berbagai ukuran data input, yaitu 8, 16, 32, 64, 128, 256, 512, dan 1024 byte. Hasil

pengujian dianalisis untuk menilai seberapa efektif MicroPython dalam menangani

alokasi dan manajemen memori pada aplikasi sistem kendali real-time berbasis STM32.

Metode Pengujian

Program uji ini ditulis menggunakan MicroPython pada STM32F4 dengan tujuan

untuk mengevaluasi penggunaan memori saat implementasi algoritma PID. Program

memanfaatkan pustaka machine untuk konfigurasi UART sebagai media pencatatan hasil

pengujian, serta pustaka gc untuk memantau penggunaan memori selama

eksekusi(Adawiyah Ritonga & Yahfizham Yahfizham, 2023).

 Pada bagian awal, konstanta PID (Kp, Ki, Kd) didefinisikan untuk digunakan dalam

fungsi compute_pid, yang menghitung keluaran PID berdasarkan nilai setpoint dan nilai

pengukuran simulasi. Algoritma PID dijalankan dengan menghitung error, integral, dan

turunan sebagai bagian dari proses kontrol.Data pengujian dihasilkan secara acak dengan

panjang data yang bervariasi dari 1 hingga 128 elemen untuk merepresentasikan berbagai

kondisi beban data pada sistem kendali. Setiap elemen pada data array diolah

menggunakan algoritma PID dengan nilai setpoint acak untuk setiap siklus uji.

153

Sebelum dan sesudah eksekusi PID, fungsi gc.collect() dipanggil untuk

mengoptimalkan penggunaan memori, dan fungsi gc.mem_alloc() digunakan untuk

membaca jumlah memori yang teralokasi. Perbedaan nilai memori setelah dan sebelum

eksekusi digunakan sebagai data penggunaan memori bersih selama proses PID berjalan.

Hasil pengujian berupa ukuran data (dalam byte), jumlah elemen, dan penggunaan

memori dicatat melalui antarmuka UART untuk mempermudah pengambilan data dan

analisis lebih lanjut. Dengan pendekatan ini, efisiensi penggunaan memori dalam

implementasi PID pada MicroPython dapat dianalisis untuk berbagai ukuran data pada

platform STM32, sebagai acuan dalam menentukan kelayakan penggunaan MicroPython

pada sistem kendali real-time berbasis mikrokontroler.

HASIL DAN PEMBAHASAN

Pengujian penggunaan memori pada implementasi algoritma PID dengan bahasa

pemrograman MicroPython dilakukan dengan variasi panjang data dari 8 hingga 1024

byte. Setiap variasi diuji menggunakan platform STM32F405RGT6 dengan metode

pembacaan memori teralokasi sebelum dan sesudah eksekusi menggunakan fungsi

gc.mem_alloc(). Perbedaan nilai memori tersebut digunakan sebagai indikator konsumsi

memori bersih selama proses eksekusi PID.

Hasil pengujian menunjukkan bahwa terjadi peningkatan penggunaan memori secara

signifikan seiring dengan bertambahnya panjang data yang diproses. Pada ukuran data 8

byte, penggunaan memori tercatat sebesar 208 byte. Seiring dengan bertambahnya

panjang data, konsumsi memori meningkat tajam hingga mencapai 10.304 byte pada data

dengan ukuran 1024 byte. Tren kenaikan ini menunjukkan adanya overhead memori yang

154

cukup besar pada penggunaan MicroPython, yang kemungkinan berasal dari mekanisme

interpreter internal, alokasi objek dinamis, serta proses garbage collection yang berjalan

selama eksekusi.

Peningkatan penggunaan memori yang signifikan pada MicroPython

memperlihatkan karakteristik bahasa interpretasi yang memiliki kebutuhan memori lebih

besar dibandingkan dengan bahasa terkompilasi. Hal ini dapat menjadi pertimbangan

penting dalam perancangan sistem kendali berbasis mikrokontroler dengan keterbatasan

memori, terutama pada aplikasi sistem kendali real-time yang membutuhkan efisiensi

tinggi dalam pemanfaatan sumber daya.

Meskipun demikian, penggunaan MicroPython tetap memiliki keunggulan dari segi

kemudahan pengembangan, portabilitas, dan fleksibilitas dalam pembuatan prototipe

sistem kendali, yang dapat mempercepat proses pengembangan dan pengujian algoritma

seperti PID pada platform mikrokontroler STM32. Oleh karena itu, pemilihan penggunaan

MicroPython dalam aplikasi sistem kendali real-time perlu mempertimbangkan

keseimbangan antara kemudahan pengembangan dengan keterbatasan memori yang

tersedia pada perangkat keras yang digunakan.

KESIMPULAN

Penelitian ini menunjukkan bahwa penggunaan bahasa pemrograman MicroPython

pada implementasi algoritma PID di mikrokontroler STM32F4 menyebabkan konsumsi

memori yang meningkat signifikan seiring dengan bertambahnya panjang data input yang

diproses. Hasil pengujian menunjukkan penggunaan memori mencapai 10.304 byte pada

data 1024 byte, menunjukkan adanya overhead memori yang cukup besar akibat

mekanisme interpreter dan pengelolaan memori dinamis pada MicroPython. Meskipun

demikian, MicroPython tetap menawarkan kemudahan dalam pengembangan dan

fleksibilitas tinggi dalam pembuatan prototipe sistem kendali. Oleh karena itu,

pemanfaatan MicroPython pada sistem kendali real-time perlu mempertimbangkan

keterbatasan memori perangkat untuk memastikan sistem tetap berjalan dengan efisien

dan stabil sesuai kebutuhan aplikasi.

DAFTAR PUSAKA
Adawiyah Ritonga, & Yahfizham Yahfizham. (2023). Studi Literatur Perbandingan Bahasa

Pemrograman C++ dan Bahasa Pemrograman Python pada Algoritma Pemrograman. Jurnal

Teknik Informatika Dan Teknologi Informasi, 3(3), 56–63.

https://doi.org/10.55606/jutiti.v3i3.2863

Bell, C. (2024). MicroPython for the Internet of Things. In MicroPython for the Internet of

Things. https://doi.org/10.1007/978-1-4842-9861-9

Murdani, M. (2023). Analisis Studi Literatur Penerapan Algoritma Pemrograman pada Internet of

Things (IoT). Jurnal Sadewa: Publikasi Ilmu Pendidikan, Pembelajaran Dan Ilmu Sosial,

2(1), 244–255. https://doi.org/10.61132/sadewa.v2i1.507

Plauska, I., Liutkevičius, A., & Janavičiūtė, A. (2023). Performance Evaluation of C/C++,

MicroPython, Rust and TinyGo Programming Languages on ESP32 Microcontroller.

Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010143

Prabowo, N. K., & Irwanto, I. (2023). The Implementation of Arduino Microcontroller Boards in

Science: A Bibliometric Analysis from 2008 to 2022. Journal of Engineering Education

Transformations, 37(2), 106–123. https://doi.org/10.16920/jeet/2023/v37i2/23154

Solekha, R., & Latifa, U. (2024). Sistem Kendali Proportional Integral Derivative (PID)

Menggunakan Mikrokontroler Arduino Pada Thinkercad. ELECTRON Jurnal Ilmiah Teknik

Elektro, 5(1), 89–97. https://doi.org/10.33019/electron.v5i1.108

ST-Microelectronics. (2024). STM32F412xE STM32F412xG. January.

