Vol 9 No. 7 Juli 2025
Jurnal Riset Studi Multidisiplin ISSN: 2110-2152

PENGARUH PENGGUNAAN BAHASA PEMROGRAMAN
MICROPYTHON TERHADAP PENGGUNAAN MEMORI UNTUK
IMPELEMENTASI ALOGRITMA PID PADA MIKROKONTROLER
STMa32

Mukhammad Rifgi Abdillah?, Santoso?
2141220079@student.polinema.ac.id?, santoso@polinema.ac.id?
Politeknik Negeri Malang

ABSTRAK

MicroPython merupakan bahasa pemrograman berbasis interpretasi yang dirancang untuk berjalan
pada sistem mikrokontroler dengan sumber daya terbatas. Bahasa ini memberikan kemudahan
dalam pengembangan dan fleksibilitas tinggi, namun memunculkan pertanyaan terkait efisiensi
penggunaan memori. Penelitian ini bertujuan untuk menganalisis pengaruh penggunaan
MicroPython terhadap penggunaan memori dalam implementasi algoritma PID pada
mikrokontroler STM32F4. Pengujian dilakukan dengan menjalankan program PID menggunakan
platform MicroPython dengan variasi panjang data sebesar 8 hingga 1024 byte. Penggunaan
memori diukur secara langsung melalui fungsi monitoring memori internal dan hasilnya dianalisis
untuk mengevaluasi kinerja sistem. Hasil pengujian menunjukkan bahwa penggunaan memori
meningkat secara signifikan seiring dengan bertambahnya panjang data, dengan penggunaan
memori mencapai 10.304 byte pada data berukuran 1024 byte. Temuan ini menunjukkan bahwa
manajemen memori otomatis dan overhead interpretasi pada MicroPython menyebabkan
penggunaan memori yang lebih besar, yang dapat mempengaruhi efisiensi sistem pada
mikrokontroler dengan sumber daya terbatas. Dengan demikian, meskipun MicroPython unggul
dari sisi kemudahan pengembangan, penggunaannya dalam implementasi algoritma kendali pada
sistem real-time perlu dipertimbangkan secara cermat berdasarkan keterbatasan memori
perangkat.

Kata Kunci: MicroPython, PID, STM32.

ABSTRACT

MicroPython is an interpreted programming language designed to run on microcontroller systems
with limited resources. This language offers ease of development and high flexibility, yet raises
questions regarding memory usage efficiency. This study aims to analyze the impact of using
MicroPython on memory usage in the implementation of the PID algorithm on STM32F4
microcontrollers. Testing was conducted by running a PID control program using the
MicroPython platform with data lengths varying from 8 to 1024 bytes. Memory usage was
measured directly using internal memory monitoring functions, and the results were analyzed to
evaluate system performance. The test results showed that memory usage increased significantly
as the data length increased, with memory usage reaching 10,304 bytes for data lengths of 1024
bytes. These findings indicate that the automatic memory management and interpretation
overhead in MicroPython lead to higher memory usage, which may affect system efficiency on
resource-constrained microcontrollers. Therefore, although MicroPython excels in ease of
development, its use in implementing control algorithms in real-time systems needs to be carefully
considered based on the device’s memory limitations.

Keywords: MicroPython, STM32, PID.

150

mailto:%202141220079@student.polinema.ac.id1
mailto:dominggusosa@gmail.com2

151

PENDAHULUAN

Perkembangan sistem kendali berbasis mikrokontroler menuntut efisiensi tinggi
dalam penggunaan sumber daya, Khususnya memori, untuk memastikan sistem dapat
berjalan secara andal dalam kondisi sumber daya terbatas. Salah satu algoritma yang
umum digunakan dalam sistem kendali adalah Proportional-Integral-Derivative (PID),
yang memiliki sensitivitas terhadap keterbatasan memori pada perangkat keras
mikrokontroler. Dalam konteks ini, pemilihan bahasa pemrograman menjadi faktor
penting yang memengaruhi efisiensi penggunaan memori sistem. MicroPython merupakan
implementasi ringan dari Python 3 vyang dirancang khusus untuk perangkat
mikrokontroler, menawarkan kemudahan sintaksis, portabilitas, dan kecepatan
pengembangan, namun menggunakan pendekatan interpreted yang memiliki kebutuhan
memori lebih tinggi dibandingkan dengan bahasa terkompilasi seperti C++. Oleh karena
itu, penting untuk mengevaluasi sejauh mana penggunaan MicroPython memengaruhi
efisiensi penggunaan memori dalam implementasi algoritma PID pada sistem
tertanam(Prabowo & Irwanto, 2023).

Penelitian ini berfokus pada pengujian penggunaan memori algoritma PID yang
dijalankan dalam lingkungan bahasa pemrograman MicroPython pada mikrokontroler
STM32. Parameter utama yang dianalisis adalah penggunaan memori untuk berbagai
panjang data input, dengan tujuan mengetahui dampak nyata dari paradigma
pemrograman terhadap efisiensi pemanfaatan sumber daya dalam sistem tertanam. Hasil
pengujian diharapkan dapat memberikan referensi empiris dalam memilih bahasa
pemrograman yang sesuai untuk aplikasi kendali waktu nyata (real-time control) pada
perangkat mikrokontroler dengan keterbatasan sumber daya.

METODE PENELITIAN
Fitur bahasa program MicroPython pada STM32

Dalam pemilihan bahasa pemrograman untuk mikrokontroler, kompatibilitas dengan
perangkat keras dan periferal seperti GP10, UART, SPI, dan 12C menjadi faktor utama.
Vendor mikrokontroler biasanya menyediakan pustaka abstraksi perangkat keras (HAL)
untuk mempermudah akses ke register dan periferal tertentu. Tanpa pustaka ini, bahasa
pemrograman, meskipun memiliki banyak fitur, dapat kurang efektif dalam implementasi
sistem kendali berbasis STM32F4, seperti pada ROV (Remotely Operated Vehicle)(ST-
Microelectronics, 2024). Selain itu, dukungan fitur bahasa pada perangkat juga
berpengaruh, karena beberapa fitur tingkat lanjut mungkin tidak sepenuhnya didukung.
Manajemen memori menjadi faktor penting lainnya, dengan tiga metode utama: otomatis,
manual, dan garbage collection. Meskipun garbage collection mengurangi kesalahan
alokasi memori, proses ini dapat menyebabkan jeda eksekusi yang tidak terduga, yang
dapat memengaruhi kestabilan sistem kendali real-time(Bell, 2024).

Pemilihan toolchain dan sistem runtime juga berdampak pada efisiensi dan kinerja
sistem. STM32F405RGT6 mendukung beberapa kompiler seperti GCC dan LLVM yang
menawarkan berbagai tingkat optimasi ukuran dan kecepatan eksekusi. Alternatif lainnya
adalah bahasa terinterpretasi seperti MicroPython, yang mempermudah pengembangan
tanpa kompilasi tambahan tetapi memiliki overhead eksekusi lebih tinggi dibandingkan
bahasa yang dikompilasi langsung. Selain itu, sistem runtime mengelola stack, heap,
threading, dan fitur dinamis lainnya, yang dapat disediakan oleh pustaka standar bahasa
atau sistem operasi real-time. Pada STM32, pendekatan bare-metal runtime tanpa sistem
operasi juga dapat diterapkan, meskipun dengan fitur yang lebih terbatas dibandingkan
sistem yang menggunakan OS penuh(Plauska et al., 2023).

152

Dalam penelitian ini, MicroPython digunakan sebagai bahasa pemrograman pada
STM32F4 untuk mengimplementasikan algoritma PID dengan fokus analisis pada
penggunaan memori saat proses eksekusi berlangsung. Konfigurasi sistem dilakukan
dengan menggunakan MicroPython port STM32 dengan pustaka machine untuk
mengakses GPIO dan UART, serta modul waktu internal untuk pengukuran durasi
eksekusi. Lingkungan pengujian menggunakan pendekatan bare-metal tanpa sistem
operasi untuk menjaga kesederhanaan dan kontrol penuh terhadap pemanfaatan memori
selama pengujian.

Algoritma yang Digunakan

Dalam penelitian ini, algoritma Proportional-Integral-Derivative (PID) digunakan
sebagai metode pengendalian utama dalam sistem kendali permukaan Remotely Operated
Vehicle (ROV). Algoritma ini bertugas mengatur aktuator berdasarkan selisih antara nilai
setpoint dan nilai aktual dari sensor, dengan tujuan menjaga kestabilan sistem dan
menghasilkan respons yang cepat serta presisi(Murdani, 2023). Implementasi PID
menjadi komponen penting dalam pengujian performa bahasa pemrograman, karena
perhitungannya melibatkan operasi berulang yang sensitif terhadap efisiensi eksekusi pada
mikrokontroler STM32F(Solekha & Latifa, 2024).

Performa algoritma ini dievaluasi berdasarkan parameter penggunaan memori
sebagai indikator efisiensi sistem. Implementasi PID diuji pada lingkungan MicroPython
di mikrokontroler STM32F405RGT6 dengan membandingkan penggunaan memori pada
berbagai ukuran data input, yaitu 8, 16, 32, 64, 128, 256, 512, dan 1024 byte. Hasil
pengujian dianalisis untuk menilai seberapa efektif MicroPython dalam menangani
alokasi dan manajemen memori pada aplikasi sistem kendali real-time berbasis STM32.
Metode Pengujian

Program uji ini ditulis menggunakan MicroPython pada STM32F4 dengan tujuan
untuk mengevaluasi penggunaan memori saat implementasi algoritma PID. Program
memanfaatkan pustaka machine untuk konfigurasi UART sebagai media pencatatan hasil
pengujian, serta pustaka gc untuk memantau penggunaan memori Selama
eksekusi(Adawiyah Ritonga & Yahfizham Yahfizham, 2023).

def compute_pid(setpoint, measured, integral, last_error):
error = setpoint - measured
integral += error

derivative = error - last_error

last_error = error
output = Kp * error + Ki * integral + Kd * derivative
return output, integral, last_error

Pada bagian awal, konstanta PID (Kp, Ki, Kd) didefinisikan untuk digunakan dalam
fungsi compute_pid, yang menghitung keluaran PID berdasarkan nilai setpoint dan nilai
pengukuran simulasi. Algoritma PID dijalankan dengan menghitung error, integral, dan
turunan sebagai bagian dari proses kontrol.Data pengujian dihasilkan secara acak dengan
panjang data yang bervariasi dari 1 hingga 128 elemen untuk merepresentasikan berbagai
kondisi beban data pada sistem kendali. Setiap elemen pada data array diolah
menggunakan algoritma PID dengan nilai setpoint acak untuk setiap siklus uji.

153

00

for n in [1, 2, 4, 8, 16, 32, 64, 128]:
data = [random.uniform(®, 200) for _ in range(n)]
setpoint = random.uniform(@, 200)
integral = @

last_error = 0

gc.collect()
mem_before = gc.mem_alloc()

Sebelum dan sesudah eksekusi PID, fungsi gc.collect() dipanggil untuk
mengoptimalkan penggunaan memori, dan fungsi gc.mem_alloc() digunakan untuk
membaca jumlah memori yang teralokasi. Perbedaan nilai memori setelah dan sebelum
eksekusi digunakan sebagai data penggunaan memori bersih selama proses PID berjalan.

Hasil pengujian berupa ukuran data (dalam byte), jumlah elemen, dan penggunaan
memori dicatat melalui antarmuka UART untuk mempermudah pengambilan data dan
analisis lebih lanjut. Dengan pendekatan ini, efisiensi penggunaan memori dalam
implementasi PID pada MicroPython dapat dianalisis untuk berbagai ukuran data pada
platform STM32, sebagai acuan dalam menentukan kelayakan penggunaan MicroPython
pada sistem kendali real-time berbasis mikrokontroler.

HASIL DAN PEMBAHASAN

Pengujian penggunaan memori pada implementasi algoritma PID dengan bahasa
pemrograman MicroPython dilakukan dengan variasi panjang data dari 8 hingga 1024
byte. Setiap variasi diuji menggunakan platform STM32F405RGT6 dengan metode
pembacaan memori teralokasi sebelum dan sesudah eksekusi menggunakan fungsi
gc.mem_alloc(). Perbedaan nilai memori tersebut digunakan sebagai indikator konsumsi
memori bersih selama proses eksekusi PID.

10000 4 |[| MicroPython| 10304

5184

2624

1360
1000 o

208

100 A

Penggunaan Memory (byte) (Log Scale)

8 16 32 64 128 256 512 1024
Panjang Data (byte)

Hasil pengujian menunjukkan bahwa terjadi peningkatan penggunaan memori secara
signifikan seiring dengan bertambahnya panjang data yang diproses. Pada ukuran data 8
byte, penggunaan memori tercatat sebesar 208 byte. Seiring dengan bertambahnya
panjang data, konsumsi memori meningkat tajam hingga mencapai 10.304 byte pada data
dengan ukuran 1024 byte. Tren kenaikan ini menunjukkan adanya overhead memori yang

154

cukup besar pada penggunaan MicroPython, yang kemungkinan berasal dari mekanisme
interpreter internal, alokasi objek dinamis, serta proses garbage collection yang berjalan
selama eksekusi.

Peningkatan penggunaan memori yang signifikan pada MicroPython
memperlihatkan karakteristik bahasa interpretasi yang memiliki kebutuhan memori lebih
besar dibandingkan dengan bahasa terkompilasi. Hal ini dapat menjadi pertimbangan
penting dalam perancangan sistem kendali berbasis mikrokontroler dengan keterbatasan
memori, terutama pada aplikasi sistem kendali real-time yang membutuhkan efisiensi
tinggi dalam pemanfaatan sumber daya.

Meskipun demikian, penggunaan MicroPython tetap memiliki keunggulan dari segi
kemudahan pengembangan, portabilitas, dan fleksibilitas dalam pembuatan prototipe
sistem kendali, yang dapat mempercepat proses pengembangan dan pengujian algoritma
seperti PID pada platform mikrokontroler STM32. Oleh karena itu, pemilihan penggunaan
MicroPython dalam aplikasi sistem kendali real-time perlu mempertimbangkan
keseimbangan antara kemudahan pengembangan dengan keterbatasan memori yang
tersedia pada perangkat keras yang digunakan.

KESIMPULAN

Penelitian ini menunjukkan bahwa penggunaan bahasa pemrograman MicroPython
pada implementasi algoritma PID di mikrokontroler STM32F4 menyebabkan konsumsi
memori yang meningkat signifikan seiring dengan bertambahnya panjang data input yang
diproses. Hasil pengujian menunjukkan penggunaan memori mencapai 10.304 byte pada
data 1024 byte, menunjukkan adanya overhead memori yang cukup besar akibat
mekanisme interpreter dan pengelolaan memori dinamis pada MicroPython. Meskipun
demikian, MicroPython tetap menawarkan kemudahan dalam pengembangan dan
fleksibilitas tinggi dalam pembuatan prototipe sistem kendali. Oleh karena itu,
pemanfaatan MicroPython pada sistem kendali real-time perlu mempertimbangkan
keterbatasan memori perangkat untuk memastikan sistem tetap berjalan dengan efisien
dan stabil sesuai kebutuhan aplikasi.

DAFTAR PUSAKA

Adawiyah Ritonga, & Yahfizham Yahfizham. (2023). Studi Literatur Perbandingan Bahasa
Pemrograman C++ dan Bahasa Pemrograman Python pada Algoritma Pemrograman. Jurnal
Teknik Informatika Dan Teknologi Informasi, 3(3), 56-63.
https://doi.org/10.55606/jutiti.v3i3.2863

Bell, C. (2024). MicroPython for the Internet of Things. In MicroPython for the Internet of
Things. https://doi.org/10.1007/978-1-4842-9861-9

Murdani, M. (2023). Analisis Studi Literatur Penerapan Algoritma Pemrograman pada Internet of
Things (1oT). Jurnal Sadewa: Publikasi Ilmu Pendidikan, Pembelajaran Dan IImu Sosial,
2(1), 244-255. https://doi.org/10.61132/sadewa.v2i1.507

Plauska, 1., Liutkevi¢ius, A., & Janavi¢iité, A. (2023). Performance Evaluation of C/C++,
MicroPython, Rust and TinyGo Programming Languages on ESP32 Microcontroller.
Electronics (Switzerland), 12(1). https://doi.org/10.3390/electronics12010143

Prabowo, N. K., & Irwanto, I. (2023). The Implementation of Arduino Microcontroller Boards in
Science: A Bibliometric Analysis from 2008 to 2022. Journal of Engineering Education
Transformations, 37(2), 106-123. https://doi.org/10.16920/jeet/2023/v37i2/23154

Solekha, R., & Latifa, U. (2024). Sistem Kendali Proportional Integral Derivative (PID)
Menggunakan Mikrokontroler Arduino Pada Thinkercad. ELECTRON Jurnal limiah Teknik
Elektro, 5(1), 89-97. https://doi.org/10.33019/electron.v5i1.108

ST-Microelectronics. (2024). STM32F412XE STM32F412xG. January.

